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The contribution to the internal energy of slightly reduced WO, crystals containing CS planes due to 
electrostatic interactions between ions in the CS plane and ions in the surrounding crystal matrix 
or in neighboring CS planes has been investigated theoretically. Three CS plane geometries have 
been studied, {102}, {103}, and {OOl}. Using simple assumptions about the charge distribution in the 
CS planes, numerical values for these interaction energies have been estimated. It was found that 
the interaction energy between a CS plane and the surrounding matrix was negligible compared to the 
repulsive (coulomb) interaction energy between a pair of CS planes. The magnitude of this repulsive 
energy was in the order 1103) < 1102) < {OOl}. The possible significance of these results in controlling 
the microstructure of crystals containing CS planes is discussed. 

Introduction 

It has been known for some years now that 
the loss of oxygen from WO, crystals results 
in the formation of crystallographic shear (CS) 
planes in the matrix of the parent oxide. Ini- 
tially these CS planes are distributed at ran- 
dom and lie on (102) planes (referred to an 
idealized cubic ReO, type unit cell). As the 
degree of reduction increases, the CS plane 
density increases to result in fairly well- 
ordered arrays of { 102) CS planes. When the 
overall reduction of the crystals falls below 
about W02.93, the CS planes lie upon { 103) 
planes rather than (102) planes, and form 
quasi-ordered arrays. In WO, doped with 
other metals, other CS plane indices are also 
found, namely, {104} and {OOl}, and in such 
cases the order of reduction is (102) + 
1103) --f { 104) --z {OOI}. The structural ge- 
ometry of these oxides is described fully in a 
number of recent reviews (1-3) and therefore 
will not be described further here except in 
such detail as is needed. 

* Present address: Department of Metallurgical 
Engineering, Yokohama National University, Ohka, 
Minami-Ku, Yokohama, 233 Japan. 

From the first discovery of these oxides 
there has been interest and speculation con- 
cerning both the mechanisms of formation of 
CS planes in W03 and on the forces between 
CS planes which allow them to order into 
regular or fairly regular arrays. As far as the 
inter-CS plane forces are concerned specula- 
tive discussions (see, e.g., (4)) have centered 
upon elastic strain energy and coulombic 
(electrostatic) interactions. An investigation 
of the elastic strain due to { 1001 CS planes in an 
idealized Re03 matrix was made by Stoneham 
and Durham (5) and more extensive calcula- 
tions of the elastic strain energy due to {102), 
{103}, and (001) CS planes in WO, by us (6). 
This latter paper investigated the proposal 
that the microstructures occurring in reduced 
WO, were a consequence of the elastic strain 
energy due to CS planes in the parent oxide 
and represented situations with lowest values 
of elastic strain. Although a generally good 
correlation between microstructure and elas- 
tic strain was observed, at low CS plane spac- 
ings it was found that the elastic strain energy 
considerations were becoming a less reliable 
guide and that other factors were of import- 
ance. One of these could be electrostatic 
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interaction energy. In order to take this sug- 
gestion further we have calculated the electro- 
static interaction energy due to (102}, {103}, 

a 

FIG. 1. Idealized projections of the structures of (a) 
{102} CS planes; (b) {103} CS planes, and (c) a {lOl} 
CSplane in an idealized cubic WO, matrix. The shaded 
squares represent (WO,) octahedra. 

and (001) CS planes in reduced W03. These 
results are presented in this communication. 

Theory 

The idealized structures of { 102}, { 103}, and 
(001) CS planes, shown in Fig. I, reveal that 
the atom density in the CS planes is appreci- 
ably higher thanin the WO,-like parent matrix. 
At present, the real charge type and distri- 
bution in these oxides is unknown, so for 
purposes of our calculations we have assumed 
that the crystals can be treated as ionic, con- 
taining 02- anions and some or all of the 
cations W6+, W5+, and W4+. Using this model 
it is a straightforward matter to maintain the 
CS planes as formally neutral over small 
segments of their length. In order to keep the 
following equations as general as possible, 
rather than distribute these ions in arbitrary 
arrangements, we have chosen to retain the 
nominal charge on each W”+ ion as 6+ and 
to add an arbitrary additional charge to 
the units comprising the CS plane. In this 
case the charge per unit of a (102) CS plane 
is (2 + 6,&, of a (103) plane is (4 + 6&e. 
and of a (001) CS plane is (2 + &,,,)e. The 
units chosen are those shown in Fig. 1, that is, 
a block of four edge-shared octahedra in the 
case of (102) CS, a block of six edge-shared 
octahedra in the case of (103) C’S, and a pair 
of edge-shared octahedra in the case of (001) 
CS. The value is, of course, not necessarily 
the same for each CS plane type, and could, 
in principle, be zero, or greater or less than 
2.0. 

As the location of any such charges is 
unknown at present, we have chosen to distri- 
bute them statistically, as shown in Fig. 2. 
That is, in the ith unit of a (102) CS plane, two 
(2 + 6,,&/2 charges are accommodated at 
(Xi - 3, Yi, Zi) and (Xi - +, Yi + 1, Zi) ; 
similarly, in the ith unit of a (103) CS plane, 
three (4 + 6&e/3 charges are accommodated 
at (Xi - +, Y1, Zi) (Xi - $, Y, + 1, Zi) and 
(Xi - 3, Yi + 2 Zi) and in the ith unit of a 
(001) CS plane, a (2 + LX,,,,) e charge is located 
at (Xi - 3, Yi, Z,), where (Xi, Yi, Zi) is the 
coordination of the reference position of the 
ith unit of each CS plane, as shown in Fig. 2. 
For simplicity of calculation we have set the 
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FIG. 2. Schematic illustration of the blocks of edge- 
sharing octahedra in (a) (1021, (b) {103}, and (c) {OOli 
CS planes. The black circles show the positions of 
the excess charges in the CS planes used in the calcu- 
lations, +(2 + a,,,) e for (a), :(4 + Cr,,,) e for (b), and 
(2 + 6,,,) e for (c). The coordinate axes used in the 
calculations are also marked. 

coordinate x-, y-, and z-axes as shown in 
Fig. 2 and we use the length of an idealized 
octahedron edge, a/2l”, as a unit length along 
each axis, where a is the unit cell edge of the 
idealized cubic WO,. It should be noted that 
these axes, which are different from the crystal- 
lographic axes, are used only for the purposes 
of the calculation. All features of crystallo- 
graphic or morphological interest are referred 
to the conventional unit cell axes. 

When CS planes with these charges are 
formed in a crystal, the electrostatic inter- 
action energies increase the internal energy by 
an amount which are designated as U,. Three 
different levels of interaction can be separated, 
viz., (Ue)I, the interaction energy between a 
single CS plane and the surrounding matrix; 
(U&, theinteractionenergybetweenthecrystal 
matrix lying between two CS planes and these 
CS planes and, if the CS planes are not in a 
neutral state, ( UJrep, the repulsive coulomb 
energy between two nonneutral CS planes. 

We can thus write down the total coulomb 
energy due to an isolated CS plane in a crystal 
as 

C”e>isol = Cue)13 (1) 

for a pair of CS planes as 

C”e)pair = (“e)l + Cue)2 + (“e)rep, C2) 

and for a cluster of N CS planes as 

WLst = We), + W- 1) (ue), 

+ W - lWe)re,. (3) 

As described in the previous papers (6, 7), 
the free energy of a reduced crystal of 

WO, (c, CS) containing CS planes can be 
expressed as 

G(N,N,, T> = G,(N) + G,(N, NJ + GiWd, (4) 

where Go represents the free energy of the 
perfect WO, crystal before reduction and 
containing N tungsten atoms, G, is the free 
energy due to Nd noninteracting CS planes 
and Gi is the free energy contribution due to 
all the interactions between the CS planes and 
each other or the surrounding crystal matrix. 
Gd is therefore analogous to a defect forma- 
tion energy and Gi to a defect interaction 
energy. Formally, the terms in U, will belong 
to Gi. 

2.1. (U,)l 
For a (103) CS plane, the coulomb inter- 

action energy (Ec)i between the Zth WO, 
octahedron, the W ion of which is located at 
(XI, Y,, Zr), and the charges in the ith unit 
of the CS plane at a position (Xi, Yi, ZJ (see 
Fig. 2) has the form 

(EC>, = 3 
[ 

(4 + ha3> c2,E 1 
3 

6 
X a -- 

1,=1 h Ir, + 2/&“2k, 

- &)“‘kl - Ir, +li + jl 

1 1 1 
-Ir,+i-jl-lr,-i-jl-jr,-i+jl, 

(5) 

where i, j, k are the unit vectors along x-, y-, 
and z-axes and E is the dielectric constant of 
the crystal. Also 

rl=(XI-Xi)i+(Y,- YJj 
+ (Z, - Zi> k 

rz=(X,--Xi+s)i+(Y,- Yi-1) 
+ (Z, - Zi) k. (6) 

rs=(XI-Xi+$)i+(Yr- Yi-2)j 
+ (Z, - Zi) k. 

As the coulomb interaction energy between the 
Zth octahedron and all the charges in the (103) 
CS plane is zi (Ec)i where xi indicates the 
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summation of the coulomb interaction energy 
caused by charges in energy unit of the (103) 
CS plane, (U,), is given by the following 

where x1 indicates the summation of the 
coulomb interaction energy of all surrounding 
W06 octahedra. 

By similar reasoning (U,), for (102) and 
{OOI} CS planes can be obtained. 

2.2. (UC?), 

Let the Zth octahedron, the center of which 
is located at (X1, Y,, Z,), lie between the (103) 
CS planes 1 and 2. In this case there are two 
coulomb forces, one between the Zth octa- 
hedron and the charges in the { 103) CS plane 
1 and the other between the Zth octahedron and 
charges in the { 1033 CSplane 2. These coulomb 
forces increase the internal energy by (Ii’ 
CEJi + 15’ (Ec)i’), where (E& denotes the 
coulomb interaction energy between the Zth 
octahedron and the charges in the i’th unit 
of the (103) CS plane 2, (EC), is given by Eq. 
(5) and &’ and If, have a similar meaning to 
that in Eq. (7) 

Then, (UJ, has the form, 

where z:,” indicates the summation of the 
coulomb energies of all octahedra between the 
CS plane 1 and 2. 

By similar melhods, (U,), for (102) and 
(001) CS planes can be obtained. 

2.3. (Ue>re, 
The repulsive coulomb energy, (EJre,, 

between two nonneutral (103) CS planes is 
calculated as follows. The coulomb inter- 
action energy between the excess charge 
(4 + S&e of the ith unit in the (103) CS 
plane 1 and that in the i’th unit of the CS 
plane 2, (Er,o)ii*, is given by Eq. (9), 

(Ke,)ii’ z EC4 + ~lo3Y e*/9&1 ,f {l/l(riif)j( 

+ l/l(rii,)j -i + jl + I/((riif) - 2i-k 2j(}, (9) 

where(Xi, Yi, Zi) and (Xi,, Y,,, Zip) are the CO- 

ordinations of the references position of ith 
unit in CS plane 1 and i’th unit in CS plane 2. 

The value of (U&,, is obtained by sum- 
mation of all of the coulomb interaction 
energies between units in CS planes 1 and 2, 
and we can write (U,),,, in the following way 

(u&e* = [C4 + 6103)Ze2/9El I$ $ (&ep)ii (lo) 
I 

where zil, x$ have the same meaning as 
those in Eq. (7). 

By similar means, we can derive expres- 
sions for (CT&, between (102) or (001) CS 
planes. 

Calculations and Results 

In the calculations described in this report, 
we have employed the following values: 
a = 0.38 nm; E = 300 (8, 9). 

For the present purposes the coulomb 
energies, (U,), and (U&, are defined in the 
following way. One CS plane is introduced 
into a single crystal (height H, width W) 

b 

FIG. 3. Schematic illustration of a crystal of WO,. 

containing (a) one CS plane and (b) two CS planes, 
showing the dimensions used in the calculations. 
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as shown in Fig. 3 and this CS plane has a 
coulomb interaction with all surrounding 
WO, octahedra in the crystal. The summation 
of the coulomb energy of each octahedron 
in the crystal due to this CS plane is divided 
by the cross section of the crystal, H x W, and 
this energy per unit area is defined as (U,),. 
Similarly, when two CS planes are introduced 
into the crystal, the summation of the cou- 
lomb energies of all octahedra between two 
CS planes is also divided by the cross section 
area and it is this value that is defined as 
lUcJ2. 

In order to obtain values of (U,), and (U&, 
we must calculate the coulomb interaction 
energy between the Ith octahedron and the 
charges in the unit of CS planes shown in 
Fig. 2, that is, Ii (EC), or xi, (EC-i* to start 
with. It follows from Section 2 that the cou- 
lomb interaction energy of each octahedron 
should ideally be the summation of the cou- 
lomb interaction energies due to all of the 
units in the CS plane. This calculation, how- 
ever, is impractical, so we have chosen to 
sum only the coulomb interaction energies 
due to 15 x 30 units, in the case of a { 102) CS 
plane, 13 x 30 units in the case of a (103) CS 
plane, and 41 x 30 units in the case of an (001) 
CS plane. The units which give the largest 
coulomb interaction energies are, as expected, 
in the centers of these blocks of units and it 
was found that the absolute value of the ratio 
of the coulomb energy due to a unit in the 
boundary to the coulomb interaction energy 
due to a unit in the center was less than 10m3. 
After the calculation Of Ci (E,=)i or &, (Ec)i, we 
can obtain the values of (U,), by using Eq. (7). 
The steps in this calculation are outlined below. 
In the case of a (102) CS plane, there are three 
octahedra parallel to each unit which have 
their centers at a distance of (2N + J&z/2* from 
the center line in each unit, where N is a 
positive integer. The average value of the 
coulomb energies of these three octahedra, 
[&4NL is related to (U,), by the following 
equations. 

Cue), = W)“‘/(~‘V’~‘) Nz, EW)Iav. 
(11.1) 

:Similarly, the values of (U,), for a { 103) and a 

(001) CS plane are given by 

(II,), = (2(2)1'2/(20)1'2a2) i [E,(N),, 
N-1 

(103)CS. (I 1.2) 

(U,>I = WP2/~‘) Nt?, EUVIav 
{ool}cs. (11.3) 

The results of the calculations showed that 
the summations reached a constant level after 
values of N equal to or greater than 3, and 
these values were used in evaluating (U,)i. 
The final values were found to be 

[(Ue)Jlo2 E -8.6 x 1O-3 x (2 +;‘“‘) 

(eV/nm2). (12.1) 

[(Ue)Jlo3 N -6.8 x 1O-3 x (4+;‘03) 

(eV/nm”). (12.2) 

[(U,),JooI N -2.3 x 1O-3 x (2 + &,,) 
(eV/nm’). (12.3) 

The values of (Ue)2 can be calculated by 
using the values of xi (EC), and zi, (E,),, ob- 
tained above and Eq. (8). The results were 
calculated as a function of the spacing between 
the CS planes, for spacings lying in the range 
1.1-5.1 nm for (102) CS, 1.1-3.5 nm for (103) 
CS, and 0.95-5.0 nm for (001) CS. The values 
found did not vary significantly with spacing, 
and the steady-state values found were identi- 
cal to those for ( IY~)~, viz 

[(ue)2]102 N -8.6 x IO-3 x (2 +26102) 

(eV/nm2). (13.1) 

[(Ue)2]103 N- -6.8 x 1O-3 x (4 +;‘OJ) 

(eV/nm2). (13.2) 

[(U&x,1 N -2.3 x 1W3 x (2 + A,,,) 
(eV/nm2). (13.3). 

As described before, the repulsive coulomb 
energy between two nonneutral CS values 
1 and 2 can be calculated theoretically by 
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using Eqs. (9) and (10). The first step in this 
calculation is to obtain the value of (&Jii,. 
In order to estimate the value of (U,),,, per 
unit area of the CS planes, the value of 
(EreJiiF must converge to some definite value 
when we fix i in the CS plane I and change i’ 
in CS plane 2 or vice v~rsLI. Unfortunately it 
was found that for the practical range of i’, 
the value of (EleJii, did not converge. For 
example, in the case of two nonneutral (102) 
CS planes, separated by approximately 0.94 
nm, when we have chosen even a block of 
91 x 61 units in CS plane 2, the ratio of the 
minimum value of (Erep)ii’ due to a unit 
on the boundary of the block to the maxi- 
mum value due to the unit in the center of the 
block is about (l/SO). This means that it is 
impractical to calculate (U,),,, per unit area 
of CS plane and so we have considered two 
single crystals of different sizes, one with a 
height (H) of -12.1 nm and width (W) of 
-19.9 nm and the other with dimensions of 
-4.1 nm x 6.9 nm, where H and W are the 
dimensions shown in Fig. 3(b). We have calcu- 
lated the values of ( UJrep per unit areas in the 
center of CS plane 1 caused by CS plane 2 or 
vice versa as a function of the spacing between 
the CS planes d,. In Fig. 4 the values of 
(U,),,, for the (102), (103}, and (001) CS 
planes are plotted as a function of d,, with 
Fig. 4a corresponding to the larger crystal 
and 4b to the smaller crystal. The vertical 
axis in Fig. 4 is (U,),,, (eV/nm”)/Q where 
Q = [(2-t 6,,,)/212 for 1102) CS planes, 
Q = [(4 + S,,,)/312 for {103}, and Q = [2 + 
S,,,]’ for 001; the horizontal axis indicates the 
spacing between two CS planes, d,. 

-8 

b 1.0 2.0 3.0 1.0 5; y d, 

FIG. 4. The repulsive coulomb energy (LI,),,,, be- 
tween two CS planes separated by d, for (a) a crystal 
of approximate dimensions 12.1 nm x 19.9 nm, (b) a 
crystal of approximate dimensions 4.1 nm x 6.9 nm. 
The y-axis shows (u&,/Q, where Q = [(2 + 6102)/2]2 
for 1102) CS, [(4 + &J3]* for 1103) CS, and (2 f 
S,,,J for (001) CS. The x-axis shows the spacing be- 
tween the CS planes, d,. 

Discussion 

of the (U,),,, term depends sensitively upon 
CS plane area and crystal size. Nevertheless, a 
number of semiquantitative conclusions which 
are of interest can be drawn from the results 
and these will be outlined below. 

The results described clearly show that the The absolute magnitudes of the (U&,, 
energy terms (U,), and (U,), can be neglected terms depend critically upon the value of the 
in comparison with (U,),,, and in all pro- dielectric constant of the parent oxide, or 
bability these energy terms will not have a more precisely upon the magnitude of the 
profound effect upon the microstructures of dielectric constant in the regions between the 
crystals containing CS planes. We will there- CS planes. If the dielectric constant is low, the 
fore not discuss them in detail here. It is clear interaction between CS planes will be high, 
from the calculations that (u,),,, is more even at high spacings. This will result in high 
likely to be of some importance in this respect, values for the defect interaction energy in the 
but the present results cannot be inter- reduced crystals which may in fact become 
preted quantitatively because the magnitude prohibitively high and make the nucleation 
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of a new structure or an alternative mode of 
accommodating oxygen loss energetically 
preferred. In crystals with open structures, 
which can potentially support oxygen defi- 
ciency by way of CS plane formation, a 
high dielectric constant may thus be a neces- 
sity before CS plane formation is energetically 
attractive. It is of interest to note that the two 
parent oxides best known for the formation 
of CS structures on reduction, WO, and TiOz 
(rutile), have exceptionally high dielectric 
constants (8, 9, 21). The same is true of H- 
Nb,O, (12), which is also noted for its ability 
to form CSstructures, while MOO,, which does 
not form extensive series of CS compounds, 
has only a moderate value for its dielectric 
constant (13) and V,Os, with a low dielectric 
constant (14, 15) does not form CS phases 
on reduction (i.e., in the phase range VOZ- 
V205). It is therefore possible that a high 
dielectric constant is a prerequisite for the 
formation of CS structures. The values of the 
real charges in the CS planes; the term 6 in 
our equations is, of course, equally important. 
Indeed, if CS planes are electrically neutral 
then the term (UJrep will be zero in all cases. 
The determination of the real charge state 
within CS planes is therefore of particular 
interest. 

The sequence of values for (U,),,, are also 
of interest. For most of the range of CS 
plane spacings considered the values of (U,),,, 
are in the sequence { 103) < { 102) < (001 >. The 
geometry of these CS planes, shown in Fig. 
1, reveals that (102) CS planes are composed 
of blocks of four edge-sharing octahedra, 
(103) CS planes contain blocks of six edge- 
sharing octahedra, while (001) CS planes 
contain infinite strings of edge-shared octa- 
hedra. Between (103) and (001) CS planes an 
infinite set exists, consisting of { 104) CS, with 
blocks of eight edge-sharing octahedra, (105) 
CS, with blocks of 10 edge-sharing octahedra, 
and so on. The values of (U,),,, calculated 
suggested that if they were extended along 
the series of { 104), { 1051, etc, we would come to 
a minimum at some CS plane type between 
(103) and (001). This is a situation similar to 
that found when the elastic strain energy 
between two CS planes is considered (6), 
except that in this latter situation the elastic 

strain reaches a maximum value. Further 
calculations to determine the CS plane geo- 
metry which yields these minima and maxima, 
respectively, are in progress and will be re- 
ported at some future time. 

In considering the possible effect of (U,),,, 
on the microstructures to be found in crystals 
containing CS planes we must rely upon fea- 
tures which will be sensitive to the relative 
values of (U,),,, only. Despite this restriction, 
a number of interesting conclusions can be 
drawn. For example, the results show that the 
microstructure of very slightly reduced W03, 
consisting of{ 102) CSplanes, is not a reflection 
of the electrostatic energy terms calculated 
here. Figure 4 shows that if electrostatic inter- 
actions between nonneutral CS planes domi- 
nated the formation energy of CS planes in 
slightly reduced WO, then (103) CS plane 
geometry would be preferred to { 102). If, 
on the other hand, we consider the term (&I,), 
which is appropriate to an isolated CS plane, 
we see that there is very little to choose be- 
tween either of the CS geometries considered 
there, and it is unlikely that, should these 
energy terms be crucial, the (102) CS planes 
would dominate, as they are found to do. 
Indeed, in terms of the numerical values, 
{ 102) CS would be the least favorable. 

As the spacing between CS planes falls, 
the term (U,),,, would be expected to be- 
come relatively more important. For non- 
neutral CS planes, Fig. 4 shows that {103} CS 
planes will generally be preferred, and, except 
at the smallest spacings, (001) CS planes will 
be the least favorable. For any particular 
composition WO,, the spacing between the 
CS planes will be in the order { 102) < {103} < 
(001) which means that an ordered array of 
(102) CS planes will be far less favorable ener- 
getically than the equivalent array of { 103) CS 
planes. Experimentally it has been shown that 
reduction of WO, crystals leads to the forma- 
tion of quasi-ordered arrays of (102) CS 
planes. The present analysis shows that from 
the point of view of electrostatic energies, and 
particularly (LI&,, this situation is less stable 
than if the reduction was taken up by { 103) 
CS planes, and that as the degree of reduction 
increases, so the difference between the two 
CS plane types becomes more pronounced. It 
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is clear that the formation energy of (102) CS 
planes must be favorable to cause them to 
form initially (7) and it is possible that the 
increase in the electrostatic energy is one of the 
important factors which contributes to the 
change of CS plane type from { 102) to { 103) 
as the degree of reduction increases. 

As with the previous discussion, a know- 
ledge of the charge distribution within the CS 
planes is necessary before these speculations 
can be taken further. However, a certain 
amount of information on this may be in- 
directly gained from a consideration of the 
growth of CS planes. In materials containing 
a high density of { 103) CS planes, new CS 
planes can be induced to grow under the 
influence of the electron beam of an electron 
microscope. It has been found that if the 
initial set of { 103) CS planes are fairly widely 
spaced, for instance about 3.0 nm, cor- 
responding to an oxide W26076, the new CS 
planes grow in at a position which minimizes 
the elastic strain energy of the group (6). This 
suggests that electrostatic forces such as 
( UA, are not dominant at distances of the 
order of 1.5 nm, and if they were, the new CS 
planes would be expected to lie exactly mid- 
way between the existing CS planes. If the 
initial array of CS planes is as close as 2.0 
nm new CS planes do not grow into the array, 
but instead the crystal vaporizes (IO), which 
may indicate that electrostatic interactions 
become important at spacings of about 1.0 
nm, but other interaction energies, such as 
elastic strain (6) may also be important in 
this respect. 

In conclusion, we can say that despite the 
lack of experimental evidence concerning the 
real charge distribution within CS planes in 
reduced W03, a number of interesting com- 
parisons have emerged between the inter- 
action energy values found for the three CS 
plane geometries considered here. To date, 
theoretical calculations have also been made 
on the interaction energy due to elastic strain 
crystals of reduced WO, containing CS 
planes (6) but in these calculations the absolute 
values of the elastic strain energy were not 

obtained. In order to assess the relative im- 
portance of these two interaction energies 
and the extent to which they contribute to the 
term Gi in Eq. (4), the absolute values of the 
elastic strain energies must be calculated and 
compared with the results presented here. 
These calculations are now under way and 
will be presented in the future. 
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